p-group, metabelian, nilpotent (class 2), monomial
Aliases: C25.43C22, C24.571C23, C23.372C24, C22.1772+ 1+4, C2.26D42, C22⋊C4⋊42D4, C24⋊3C4⋊17C2, (C2×C42)⋊24C22, C23⋊Q8⋊13C2, C23.177(C2×D4), C2.54(D4⋊5D4), (C22×Q8)⋊4C22, C22⋊2(C4.4D4), (C23×C4).93C22, C23.235(C4○D4), C23.23D4⋊49C2, C23.10D4⋊33C2, C23.11D4⋊19C2, (C22×C4).516C23, C22.252(C22×D4), C24.3C22⋊45C2, C24.C22⋊54C2, C2.C42⋊67C22, (C22×D4).139C22, C2.17(C22.32C24), C2.44(C22.19C24), C2.21(C22.45C24), (C2×C4).57(C2×D4), (C2×C4⋊C4)⋊18C22, (C4×C22⋊C4)⋊69C2, (C2×C22⋊Q8)⋊16C2, (C2×C4.4D4)⋊12C2, C2.13(C2×C4.4D4), (C2×C22≀C2).10C2, (C22×C22⋊C4)⋊22C2, (C2×C22⋊C4)⋊19C22, C22.249(C2×C4○D4), SmallGroup(128,1204)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.372C24
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=1, e2=g2=b, f2=a, ab=ba, ac=ca, ede-1=gdg-1=ad=da, ae=ea, af=fa, ag=ga, bc=cb, fdf-1=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef-1=ce=ec, cf=fc, cg=gc, eg=ge, fg=gf >
Subgroups: 884 in 393 conjugacy classes, 112 normal (82 characteristic)
C1, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×Q8, C24, C24, C2.C42, C2×C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C22≀C2, C22⋊Q8, C4.4D4, C23×C4, C22×D4, C22×Q8, C25, C4×C22⋊C4, C24⋊3C4, C23.23D4, C24.C22, C24.3C22, C23⋊Q8, C23.10D4, C23.11D4, C22×C22⋊C4, C2×C22≀C2, C2×C22⋊Q8, C2×C4.4D4, C23.372C24
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C4.4D4, C22×D4, C2×C4○D4, 2+ 1+4, C22.19C24, C2×C4.4D4, C22.32C24, D42, D4⋊5D4, C22.45C24, C23.372C24
(1 6)(2 7)(3 8)(4 5)(9 24)(10 21)(11 22)(12 23)(13 30)(14 31)(15 32)(16 29)(17 26)(18 27)(19 28)(20 25)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 22)(2 23)(3 24)(4 21)(5 10)(6 11)(7 12)(8 9)(13 25)(14 26)(15 27)(16 28)(17 31)(18 32)(19 29)(20 30)
(1 22)(2 12)(3 24)(4 10)(5 21)(6 11)(7 23)(8 9)(13 18)(14 28)(15 20)(16 26)(17 29)(19 31)(25 32)(27 30)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 31 6 14)(2 18 7 27)(3 29 8 16)(4 20 5 25)(9 28 24 19)(10 13 21 30)(11 26 22 17)(12 15 23 32)
(1 7 3 5)(2 8 4 6)(9 21 11 23)(10 22 12 24)(13 17 15 19)(14 18 16 20)(25 31 27 29)(26 32 28 30)
G:=sub<Sym(32)| (1,6)(2,7)(3,8)(4,5)(9,24)(10,21)(11,22)(12,23)(13,30)(14,31)(15,32)(16,29)(17,26)(18,27)(19,28)(20,25), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,22)(2,23)(3,24)(4,21)(5,10)(6,11)(7,12)(8,9)(13,25)(14,26)(15,27)(16,28)(17,31)(18,32)(19,29)(20,30), (1,22)(2,12)(3,24)(4,10)(5,21)(6,11)(7,23)(8,9)(13,18)(14,28)(15,20)(16,26)(17,29)(19,31)(25,32)(27,30), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,31,6,14)(2,18,7,27)(3,29,8,16)(4,20,5,25)(9,28,24,19)(10,13,21,30)(11,26,22,17)(12,15,23,32), (1,7,3,5)(2,8,4,6)(9,21,11,23)(10,22,12,24)(13,17,15,19)(14,18,16,20)(25,31,27,29)(26,32,28,30)>;
G:=Group( (1,6)(2,7)(3,8)(4,5)(9,24)(10,21)(11,22)(12,23)(13,30)(14,31)(15,32)(16,29)(17,26)(18,27)(19,28)(20,25), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,22)(2,23)(3,24)(4,21)(5,10)(6,11)(7,12)(8,9)(13,25)(14,26)(15,27)(16,28)(17,31)(18,32)(19,29)(20,30), (1,22)(2,12)(3,24)(4,10)(5,21)(6,11)(7,23)(8,9)(13,18)(14,28)(15,20)(16,26)(17,29)(19,31)(25,32)(27,30), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,31,6,14)(2,18,7,27)(3,29,8,16)(4,20,5,25)(9,28,24,19)(10,13,21,30)(11,26,22,17)(12,15,23,32), (1,7,3,5)(2,8,4,6)(9,21,11,23)(10,22,12,24)(13,17,15,19)(14,18,16,20)(25,31,27,29)(26,32,28,30) );
G=PermutationGroup([[(1,6),(2,7),(3,8),(4,5),(9,24),(10,21),(11,22),(12,23),(13,30),(14,31),(15,32),(16,29),(17,26),(18,27),(19,28),(20,25)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,22),(2,23),(3,24),(4,21),(5,10),(6,11),(7,12),(8,9),(13,25),(14,26),(15,27),(16,28),(17,31),(18,32),(19,29),(20,30)], [(1,22),(2,12),(3,24),(4,10),(5,21),(6,11),(7,23),(8,9),(13,18),(14,28),(15,20),(16,26),(17,29),(19,31),(25,32),(27,30)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,31,6,14),(2,18,7,27),(3,29,8,16),(4,20,5,25),(9,28,24,19),(10,13,21,30),(11,26,22,17),(12,15,23,32)], [(1,7,3,5),(2,8,4,6),(9,21,11,23),(10,22,12,24),(13,17,15,19),(14,18,16,20),(25,31,27,29),(26,32,28,30)]])
38 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 2N | 2O | 2P | 4A | 4B | 4C | 4D | 4E | ··· | 4R | 4S | 4T | 4U |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 8 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | 8 | 8 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | C4○D4 | 2+ 1+4 |
kernel | C23.372C24 | C4×C22⋊C4 | C24⋊3C4 | C23.23D4 | C24.C22 | C24.3C22 | C23⋊Q8 | C23.10D4 | C23.11D4 | C22×C22⋊C4 | C2×C22≀C2 | C2×C22⋊Q8 | C2×C4.4D4 | C22⋊C4 | C23 | C22 |
# reps | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 8 | 12 | 2 |
Matrix representation of C23.372C24 ►in GL6(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 2 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 0 |
0 | 0 | 0 | 0 | 1 | 3 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 3 |
0 | 0 | 0 | 0 | 4 | 2 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 0 |
0 | 0 | 0 | 0 | 0 | 2 |
G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,2,0,0,0,0,0,1],[1,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,4,0,0,0,0,0,0,0,2,1,0,0,0,0,0,3],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,3,4,0,0,0,0,3,2],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,2] >;
C23.372C24 in GAP, Magma, Sage, TeX
C_2^3._{372}C_2^4
% in TeX
G:=Group("C2^3.372C2^4");
// GroupNames label
G:=SmallGroup(128,1204);
// by ID
G=gap.SmallGroup(128,1204);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,253,232,758,723,100,675,136]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=1,e^2=g^2=b,f^2=a,a*b=b*a,a*c=c*a,e*d*e^-1=g*d*g^-1=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f^-1=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f^-1=c*e=e*c,c*f=f*c,c*g=g*c,e*g=g*e,f*g=g*f>;
// generators/relations